Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol.
نویسندگان
چکیده
A proportion of neural tube defects (NTDs) can be prevented by maternal folic acid supplementation, although some cases are unresponsive. The curly tail mutant mouse provides a model of folate-resistant NTDs, in which defects can be prevented by inositol therapy in early pregnancy. Hence, inositol represents a possible novel adjunct therapy to prevent human NTDs. The present study investigated the molecular mechanism by which inositol prevents mouse NTDs. Activation of protein kinase C (PKC) is known to be essential, and we examined neurulation-stage embryos for PKC expression and applied PKC inhibitors to curly tail embryos developing in culture. Although all known PKC isoforms were detected in the closing neural tube, use of chemical PKC inhibitors identified a particular requirement for 'conventional' PKC isoforms. Peptide inhibitors offer selective inhibition of individual PKCs, and we demonstrated isoform-specific inhibition of PKC in embryonic cell cultures. Application of peptide inhibitors to neurulation-stage embryos revealed an absolute dependence on the activity of PKCbetaI and gamma for prevention of NTDs by inositol, and partial dependence on PKCzeta, whereas other PKCs (alpha, betaII delta, and epsilon) were dispensable. To investigate the cellular action of inositol and PKCs in NTD prevention, we examined cell proliferation in curly tail embryos. Defective proliferation of hindgut cells is a key component of the pathogenic sequence leading to NTDs in curly tail. Hindgut cell proliferation was stimulated specifically by inositol, an effect that required activation of PKCbetaI. Our findings reveal an essential role of specific PKC isoforms in mediating the prevention of mouse NTDs by inositol.
منابع مشابه
Effect of arsenic on neural tube in mouse embryo and relation to reduced folate carrier (RFC-1)
Arsenic is an important environmental toxicant which is usually found in drinking water in inorganic form. The hypothesis tested in this investigation is; arsenic exposure causes neural tube defects (NTDs) andthese defects of the central nervous system are more likely related to folate deficiency during fetal life. In this study, sodium arsenate was administered via intraperitoneal route at a r...
متن کاملD-chiro-inositol is more effective than myo-inositol in preventing folate-resistant mouse neural tube defects.
BACKGROUND Among mouse genetic mutants that develop neural tube defects (NTDs), some respond to folic acid administration during early pregnancy, whereas NTDs in other mutants are not prevented. This parallels human NTDs, in which up to 30% of cases may be resistant to folic acid. Most spina bifida cases in the folic acid-resistant 'curly tail' mouse can be prevented by treatment with inositol ...
متن کاملMyoinositol: The Bridge (PONTI) to Reach a Healthy Pregnancy
The use of folic acid in the periconceptional period can prevent about 70% of neural tube defects (NTDs). In the remaining cases, no medical prevention is available, and those conditions should be defined as folate-resistant NTDs. Rodent models suggest that some folate-resistant NTDs can be prevented by inositol (myoinositol and chiroinositol) supplementation prior to pregnancy. Should folic ac...
متن کاملNucleotide precursors prevent folic acid-resistant neural tube defects in the mouse
Closure of the neural tube during embryogenesis is a crucial step in development of the central nervous system. Failure of this process results in neural tube defects, including spina bifida and anencephaly, which are among the most common birth defects worldwide. Maternal use of folic acid supplements reduces risk of neural tube defects but a proportion of cases are not preventable. Folic acid...
متن کاملMouse Fkbp8 activity is required to inhibit cell death and establish dorso-ventral patterning in the posterior neural tube.
Neural tube defects (NTDs) are birth defects that can be disabling or lethal and are second in their prevalence after cardiac defects among major human congenital malformations. Spina bifida is a NTD where the spinal cord is dysplastic, and the overlying spinal column is absent. At present, the molecular mechanisms underlying the spinal bifida development are largely unknown. In this study, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2004